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Abstract 

The local-scaling transformation version of density functional theory is extended 
to the treatment of excited states. This is accomplished in the context of the super- 
particle formulation of Katriel [Int. J. Quant. Chem. 23(1983)1767]. It is shown that for 
a given superparticle generating wave function, the energy density functional corresponding 
to the excited-state super-system may be explicitly constructed. The derivation of an 
Euler-Lagrange equation for the composite excited-state density is discussed. A preliminary 
calculation for the 21S state of helium is reported. 

1. Introduction 

According to the first Hohenberg-Kohn theorem [1], the exact ground-state 
one-electron density po(r) for a system of N interacting electrons is in a one-to-one 
correspondence with the external potential v(r). This implies that if by some means 
po(r) is known, then the Hamiltonian for this system may be determined and by 
solving Schrtidinger's equation, not only the ground-state energy E0 and the ground- 
state wave function W0 but also all other eigenvalues and eigenfunctions for the 
excited states may be obtained. In this general sense, therefore, the energies of the 
excited states may be regarded as functionals of P0 [2]. 

In terms of N-particle wave functions, a variational principle for a particular 
excited state can be formulated by requiring that its wave function be orthogonal to 
all low lying states. Clearly, since the lowest lying eigenstates for given symmetries 
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automatically satisfy this orthogonality constraint, these excited states may be treated 
in the same way as the ground state. The extension of this fact to density functional 
theories applicable to these particular states is straightforward and has been discussed 
by several authors [3-6] in the context of Hohenberg-Kohn based theories [7]. It 
has been shown [8], however, that it is not possible to formulate a theory for arbitrary 
excited states by means of a simple generalization of the ground-state approach. 

A more general treatment of excited states in terms of N-particle wave functions 
is based on the Hylleraas-Undheim-MacDonald variational procedure [9, 10], which 
is an extension of the Rayleigh-Ritz variational principle. Its density functional 
theory counterpart has been developed by Valone and Capitani [11] in the context 
of a generalization of the constrained-search method of Levy [12]. 

A closely related approach for a density functional theory treatment of excited 
states has been advanced by Theophilou [13] (see also refs. [14] and [15]). Essentially, 
this approach deals with an equally-weighted sum of the first m excited states, 
leading to a composite one-particle density. The equal-weight restriction has been 
removed by Kohn [16] and Gross et al. [17], who extended these results to finite- 
temperature ensembles. Katriel [ 18] has shown that Theophilou's approach to excited 
states may be cast as a variational problem for the ground state of a super-system 
of non-interacting superparticles. All these procedures may be viewed as formulations 
advanced in the context of the Hohenberg-Kohn theory. 

There are, however, other recent formulations of density functional theory, 
which constitute either generalizations of, or alternatives to, the Hohenberg-Kohn 
version. Particularly relevant in this regard are works related to the pseudo-SchrOdinger 
equation for the density amplitude [19,20] and studies of the exact Kohn-Sham 
potential [21-23]. We should also mention Yang's "integral" formulation of density 
functional theory [24,25], Cioslowski's "density-driven" approach [26,27], and 
Kryachko's et al. "local-scaling" version [28-35]. A common ingredient of the last 
three approaches is their rigorous handling of the functional N- and v-representability 
problem. It has been shown [36] though, that the "density-driven" and "local-scaling" 
methods are very closely related: the former may be cast in terms of a finite orbital 
representation of local-scaling transformations. 

It is the aim of the present paper to develop an extension of the local-scaling 
version of density functional theory applicable to excited states (a detailed exposition 
of the treatment of ground states is given in paper I of this series [32]; some calculations 
of ground-state wave functions and energies are reported in refs. [37-41]). The 
extension to excited states is carried out in the context of a superparticle formulation 
which requires the adoption of a concerted transformation involving the whole super- 
system one-particle density. 

The present development differs from the formalism recently advanced by 
Koga [42] - also based on the local-scaling version of density functional theory - in 
that in the latter the emphasis is placed on the direct energy minimization of a 
particular excited state of a given symmetry. Because in the work reported here the 
treatment of excited states relies on concerted local-scaling transformations which 
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handles on an equal footing the ground and all excited states of a given symmetry, 
it is clear that there arise notable differences both at the formal and practical levels 
between Koga's  and the present approach. 

Since the mathematics of Katriel's [18] superparticle formulations are well- 
suited for the treatment of excited states in terms of  the local-scaling transformation 
version of density functional theory, we treat below (section 2) in some detail this 
superparticle approach. In section 3, we deal with the problem of  applying local- 
scaling transformations to excited states. In section 4, we construct the energy density 
functional for the superparticle system and finally, in section 5, we discuss the 
derivation of the Euler-Lagrange equation for the composite density. In section 6, 
we report a preliminary application of  the present method to the calculation of the 
11S and 21S states of the helium atom. 

. 

where 

and 

The superparticle a p p r o a c h  

Consider an N-electron system with the Hamiltonian 

N N-1 N 

/ Q ( r  1 . . . . .  rN)= Zh(r i )+ Y~ ~ . g ( r i , r j ) ,  
i=1 i=1 j=i+l  

h(l~)= 1 2 + 

g(  r i, rj ) = [ ri - rj [ -1 

(1) 

(2) 

(3) 

The operator 1)(ri) represents the Coulomb interactions between electron i and the 
fixed nuclei at {Ra}" 

A Z a  

EI , -gal o:=l 

(4) 

Let ~Po(r), ~ l ( r )  . . . . .  ~M(r) be its first M + 1 bound states of  the same symmetry 
(i.e., having the same spectroscopic term) as the ground state ~Fo(r), where r is the 
radius-vector in the 3N-dimensional space lR 3N, namely, r -= (rl, rE . . . . .  rN) with 
r i E lR 3, i = 1, 2 . . . . .  N. For a symmetry other than that of  the ground state, we 
assume that ~Fo(r) represents the lowest state of  that symmetry. The spin structure 
of  the given wave functions has been removed for simplicity. Clearly, however, 
since the set of  M + 1 states corresponds to the same spectroscopic term, they have 
for the different levels the same spin structure. Let us start by considering M + 1 
samples, or replicas of  the given system and by constructing a super-system consisting 
of  these M + 1 samples Csuperpar t i c l e s"  or compound particles) which do not 
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interact with each other. So, we may regard this super-system as a quantum mechanical 
system of dimension (M + 1)3N with the super-Hamiltonian 

M 
= h( i ) ,  (5)  

i=0 

where/~(i) is the Hamiltonian of the ith sample. Since the super-system introduced 
consists of non-interacting "particles", its lowest bound state can be represented in 
the form of the (M + l)-superparticle SIater determinant wave function 

~IJ(M+I)(I'I, r2 . . . . .  rM+l) = [(M + 1)!] -1/2 det [ue0(q)Wl(r2) . . . . .  q~M (rM+,)], (6) 

constructed from M + 1 orthonormalized superorbitals Wi(r), i = 0 . . . . .  M. Then 
the energy functional for the given super-system becomes 

M 
EE (M+I>I-- gI il. 

i=0 

It is trivially proved that E[W (g+ 11] attains its minimum 

(7) 

E[W(o M+I)] = E o + E 1 + . . . +  E M (8) 

iff ~I ~(M+I)  is given by eq. (6). Then the ground-state one-superparticle density, 
p(oM+l)(r), takes the form 

M 

p0CM+~)(r) = ,~_.,l~i(r)[ 2. (9) 
i=O 

Following Katriel's approach [18], we construct the super-Hamiltonian ff(M+D via 
the rule given by eq. (5) and define the appropriate class SM + 1 of admissible super- 
functions consisting of (M + 1)-superparticle Slater determinants. It is clear that 
~IJi(r) describing the ith sample must belong to L~ ) = LN\ L~- 1) to comply with the 
orthogonality constraint on the superorbitals constituting the (M + 1)-superparticle 
Slater determinant. Solving the ground-state variational problem for the given super- 
system by searching the extremum ofE[q '(M + 1/] over SM + 1, one obtains the ground- 
super-state ~ t  + 1) and the associated density p~M + ~)(r) of eq. (9). Subtracting from 
the latter the density p~M3, given by construction, one determines finally the required 
U?M(r ) = [p(M+ 1)(r ) _ p~M)(r)]l/2 tO within a phase factor. 

3. A local-scaling transformation treatment of excited states 

In order to develop a density functional theory for excited states, we must 
now transpose Katriel's approach [ 18] to the local-scaling transformation formalism. 
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For this purpose, it is necessary, however, that instead of the set N ~  of single- 
particle densities (coming from wave functions and thus possessing the topological 
properties shown by Bader [43] to be essential ingredients of true densities [32]), 
we deal with the set N s  M+ l of one-superparticle densities p(U+ 1)(r ) defined by 
eq. (9). Further, we define the generalized group 5 ?0 - [x] M+I 5-0 of local-scaling 
transformations and its action on @M+ 1£N" For a given ~6(r),  ~IJi2(r ) . . . . .  tlJiM + l(r) 

®M + 1LN and for arbitrary 

with 

A A  h 
( fN,  fN . . . . .  fN)  e ~ N  

A 
fN E 5-N, 

we have 

with 

where 

A A  A 
(fN, fN . . . . .  fN)(q,Z, (r), Ti~ (r) . . . . .  ~e~+~ (r)) 

= (Wi: ( r ) ,  Wi2f ( r )  . . . . .  Wiu+: ( r ) ) ,  (lOa) 

M+I 
(Wilf ( r ) ,Wizf(r )  . . . . .  uPiu+:(r))  E @ £ N, (10b) 

A 
Wi:( r )  = fN~pik (r). (10c) 

This action of 9 ~N on ®M+ ILN is consistent, in view of the mapping between 5- 
and N ~ ,  with the action of 5 ? -= ®M+ls-on ®M+lNff when a density (pi,(r), 
Pi2(r) . . . . .  Piu + ~(r)) ~ @M + 19(N acted upon by (f, t" . . . . .  f) e 5- is transformed as 
follows: 

with 

( f ,  f . . . . .  f ) ( p i  1 ( r ) , p i  2 ( r )  . . . . .  Piu+l ( r )  ) 

= (Pill ( r ) ,  pi2f ( r )  . . . . .  Piu+lf ( r ) ) ,  

M+I 
(pilf(r),pizf(r) . . . . .  piu+lf(r)) E @ 9~ N, 

( l l a )  

( l l b )  

where 
^ 

pikf ( r )  -- fpi k ( r ) .  ( l l c )  

For any element, say (pil(r), pi2(r) . . . . .  piu+l(r)), of ®M+INN one can 
define the density 
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M+I 
pl(r )  = Ep ik  (r), (12) 

k=l 

where I = {il . . . . .  iM+ 1}, which is clearly an element  of  N ~  (M÷ 1). In terms of  
these densities, eq. (1 la) can be rewritten as follows: 

pit(r)  = p l ( f ( r ) ) D { f ( r ) ;  r}, (13) 

which gives the definit ion of  the usual action of the group F on 9~ N(M + 1). 
With respect to the action of  ~N on ®M+ ILN defined by eq. (lOa), the class 

®M + 1LN is partitioned into the orbits as 

M+I 
(~) L N = t o a O  [a]. (14) 

One may summarize the above in the following theorem [32]. 

THEOREM 

Within every orbital O t~] c ®M + 1LN there exists a one-to-one correspondence 
between (M + 1)-superparticle wave functions, belonging to O Eal, and "densities" 
from ® M + I N N ,  and also for the given and fixed generator 

Wl2.g (r)  . . . .  iu+,,s 

of  the orbit O tal, a one-to-one correspondence between the e lement  of  O [a} and 
local-scaling transformations f ~ 

Within the given orbit O [a] c ®M + 1LN, an arbitrary one-superparticle density 
p(M+ 1)(r ) takes the form: 

M+I 
P[c~](M+I) ( r )  = I"lf,g"~[a](M+l) ()..~.,/_= ,~, [ q~k~Ig (r)l 2 (15) 

k=l 

for an appropriately chosen f ~ J-. Comparing eq. (15) with eq. (13), one arrives 
at the following 

COROLLARY 

There exists a one-to-one correspondence between the elements of  the orbit 
0[~1 ~ ®M+ 1LN and densities from N N(M+ I) 

It is clear that densities of  N N(M+ 1) can be viewed as the reduced analogues 
of  one-superparticle densities, belonging to N s  M + 1. Restricting the domain where 
the energy function E[q  '(M+ 1)] can be determined to the given orbit Otal c ®U+ 1LN ' 
one obtains the well-defined energy density functional Etail[p(r)] given on NNB (M+ 1) 
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Katriel's approach suggests a reduction of all orbits O [a] c ®M + l f_.u tO those belonging 
to SM÷ i. One can identify the class SM + 1 as that one consisting of  the elements 
of  the type 

M+I 

(q'i~ (r) ,  ~12 ( r )  . . . . .  ~IJ/g+l ( r ) )  e (~) L N , 

for which ~ik(r )  e L% ~), with k =  1 ,2  . . . . .  M +  1, and where L(i)= LN\L(~ -D. 
Using this definition for SM + 1, it is fairly easy to prove that 5 ~'v (SM+I) c SM+I. 
In other words, the concept of an orbit in ®M + 1LN is also well-defined in SM + 1. 
In particular, SM+~ contains the generalized Hohenbe rg -Kohn ,  or proper orbit 
O wm possessing the element  (q'o(r), ~Pl(r) . . . . .  q'M(r)), made up by the exact first 
M + 1 states. 

4. The  energy density functional for excited states 

For the purpose of deriving the explicit form of Ea[p(r)] with p(r) e N~  (M + 1), 
for an arbitrary orbit  O [a] in SM+~, we choose a generator  (Wq,g(r), 
Wi2g(r) . . . . .  WiM.,g(r)). Since an operator ~U changes each one of the generating 
wave functions W'&,g(r) into Wii,p(r), i.e. q'ik,p(r)= flvq'ik,g(r), (cf. eq. (10c)), in 
view of  eq. (7) we have 

M + I ,  M+I 
- 

k=l 

(16) 

where ptC~](r) e N ~  (M + 1) is defined by 

M+I M+I 

= I  P 5(r> = 2 
k=l k=l 

ct r The transformation function f~,p( , 0, (9) is generated by spanning the function 

a r = . (18) fg,p( , 0o, (90) dr" 3r'Zp(r" 0°' (90) 
"(a) (fg,~p( r', 0o, (PO), 00, (90) 0 I-'l,g 

with 
M+I 

p[a] S"  ^[a l  t,g =-- ~ I-'i~,g (r) (19) 
k=l 

over all angles 0o and ~ .  The energy expression given by eq. (16) can be expanded 
as follows 

M + I ,  [ 
k=l 

(20) 
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Let us consider the explicit form of the various terms appearing in eq. (20). By 
definition, the kinetic energy operator is given by 

1 (21)  ~'°'[p!:'<":'] - ~S :r V.V. ~.!,:J <r. r'~ .=.. 
Since the transformed 1-matrix is related to the generating 1-matrix by means of 
the transformation 

[ ( f j~  } ( f ] a  }]l/2"[']/"['~]:-"eLal(r')), (22) :ik ,p 

where D{fJap](r); r'} is the Jacobian of the transformation, we obtain for the kinetic 
energy term [32] 

• '-'I,.: = ;-s,'.[,,. ]' 
+'-S,'..:<r~[~.~.."°' <.'~1]... <,,~ 2 ~,,, (:j,;l(.), ::.J -...0 

In the above expression, the transformed density satisfies the equation 

P!Y<r>- o{:J,;'<.>;r~-~°~(:J,;:<r~) (24> 
JP~k,g 

and =Ial is the non-local part of the 1-matrix [43]. Similarly, we have the following Y i ,  ,g 

expressions for the remaining energy terms: 

E,°, r.~°,<.~l=~S:rS,,/p:(.~p~°~<.'~ Coulomb[/"/, t - r'[ ' (25) 

U~I [P!k al(r)]  = S d3rv(r)p!ff l(r)' (26) 

1 3 [a] xc[a] tal (r)).  "~.~[.:(")] = ~ S~ "~,~ (r)~,.. ([.,~ (,.)];..,.,'~°' (27) 

,EXC[a] In eq. (27), _~,g is defined by 

[a] ,..,-XC[alt.[a] _~ [a] , 
1 ~x~°~([,o:(,.>l;:J;~<r~) ~la',.. p:' (r,.,,,. t.',~,.<',;:~,.<r >) <'8> 

- - ik 'g  ' = r - r'll ' 

where q-xc[al is the exchange-correlation factor [44] corresponding to the generating Lk,g [a] 
wave function Oik.g(r). 
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Notice that for a given and known generator 

we may actually construct the nonlocal term 

arising from the 1-matrix, as well as the nonlocal exchange-correlation factor 

This is done by first computing 

and then replacing r and r '  by their counterparts 

respectively. 
In is important to remark that in view ofeqs. (17)and (18),the transformation 

f[a] (r)  depends upon the complete set {p~a] (r)}M=~l of one-particle function densities ag,p 
corresponding to the ground state (k = 1) and to M excited states (k = 2 . . . . .  M + 1). 
This relationship may be represented by 

Equation (29) embodies the main idea of the energy density functional theory 
devised here to deal with the bound spectrum. All prototype wave functions of the 
ground plus excited states are deformed coherently into their optimal variational 
representations by means of a unique local-scaling transformation which preserves 
throughout this deformation the orthogonality of the wave functions. 

5. Variational equations for the one-particle densities 

The energy functional given by eq. (16), whose components are determined 
f r~[al r r ~ l M + l  by eqs. (23)-(27), is a well-defined functional of the set tt-'ik t-JJk=l of one- 

particle densities. However, the variation is of the constrained type since it is 
that the variational one-particle densities {p~Cd (r)} come from the required generating 

- _ [ a l  one-particle densities [P/k,g (r)} via the concerted transformation given by eq. (24). 
This is a finite subsidiary condition [45] which may be incorporated in the variational 
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principle through the Lagrange multplier functions {c%(r)}. Once the normalization 
condition has been included, the stationary variational principle may be written as 

,~, I~'IE[a][Pl:l(r)]-#l:][f d3rp!:](r) -N]  
6p}~ J(r)L k=l ". t 

[~] . [a] [~] . 
+ f d309i, (r)[p!•](r) - D(f;.p (r),r)pi, (f;.p (r), r ) ] ) ]  = 0, (30) 

for k= I . . . . .  M+  1. 
Before proceeding to the variation, let us notice that also by virtue of 

=It0 eq. (29), the nonlocal component Yik,g of the I-matrix, appearing in the energy 
expression through eq. (23), depends upon the whole set of one-particle densities: 

~[fX](fl[Of ] [12"] _ t \  7.[Cl][r¢ [(X]. , , M + I  zik,g g,p (r);f;,p ( . )  - r;k,g~ttPik tr)tk=l ] ; r , r ' )  (31) 

Similarly, the following relation holds for the exchange-correlation factor: 

,.-f-XC[cc] ([ t ~ [ a ] . . , M + I  -',,,,q:xcta](f~.;l(r); f [g ; ] ( r ' )  ..'i,,, ,,...I-'i, ~r)i,., ];r,r'). (32) 

This fact allows us to write 

EXCtct] ([/9}? ] ( r ) ] ,  fg[,~] ( r ) )  = "t-'XCta] {r,  ,a[~x] ( ,,.,,,M+I ]; (33) ik,g . "-'i,.g I tt~/ ,  ~':Jk=1 r e 

[u] 
The same applies to D(f~o,~O (r); r), the Jacobian of the transformation and to the 
transformed density p~a] (ft~] (r)). Carrying out the variation stipulated by eq. (30), 
we are led to the system of coupled Euler-Lagrange equations: 

2 [c~] 
1 I V  r p ! : ] ( r ) 1 2  1 V r Pi. (r) + 19i,.gT[a]([ {Pi.[al(r)}k=lM+l ]; r)  
8 L P ~  J 4 p}~l(r) 

XC[ct] [c¢] M+I + 

O 
= i +   p!y<r> j 

(34) 

for k= 1 . . . . .  M + I .  
In the above equation, v T is a potential which originates from the nonlocal 

contribution to the kinetic energy functional and is defined by 
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l)T}gl([t,,ta]r,.~lM+l 1 z [ a ]  [a l  M+I , tei, t "Jk= l  ] ; r ) =  ~ ~r Vr" [ik.g([{Pi k (r)}k=l ] ;r .r  )1,=,, 
l ot qr  a (V r + -~ri, " '~p!?](r) '  Vr')'!~'~([{P!:](r)}M=+ll];r'r'))[r=r'" (35) 

The potential v xc which arises from the exchange-correlation term is given by 

xc[a] [,~l r) = 1 1)i,.s ([ {pi, M+I XC[al [al r)  (r)}k=l ]; ~Ei.,8 ([{pi, (r)}M~l] ;  

X,r XC[t~] [r t,.[alr ,A1M+I l .  r) 
+p!~l(r  ) ~'~ik,g /tt~'i~ vJJk=l J, (36) 

[t~l (~Pik (r) 

The potential v n is the usual Hartree potential produced by the charge distribition 
p~a] (r) 

1)iH[a]([PI; ](r)];r) = I d3r" P~](r'-.) 

Due to the presence of coupling terms in v r and v xc, this system of equations must 
be solved self-consistently. 

6. Preliminary calculations 

The practical meaning of the set of Euler-Lagrange equations given by 
eqs. (34) is the following. Each one of the equations corresponds to the variation 
of the energy of state Wi with respect to its particular one-particle density Di(r). All 
other densities pj(r) for j ~: i remain fixed, while pi(r) is varied. However, these 
remaining densities influence the variation through their contribution to the total 
density which is precisely the one being transformed by the concerted local-scaling 
procedure. 

In order to avoid at this initial stage the numerical work involved in solving 
directly eqs. (34), we have selected to deal rather with the equivalent variational 
principle given by eq. (30). In what follows, we report preliminary calculations for 
the l l s  and 21S states of helium. The simplest approximation to these states is 

• (11S) - ~o(1, 2) = [ls(rl)ls(r2)] x spin part, (38a) 

1 
• (21S) - ~l(1,  2) = ---~_[ls(r:)2s(r2) + 2s(rl)lS(r2) ] x spin part, (38b) 

where the orthonormal functions Is(r) and 2s(r) are 
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I s ( r )  = e -at ,  (39a)  

2 s ( r )  = B(1 - ,],flr)e -13r, (39b)  

in which 

f13 ]1/2, (39C) 

B = lr(3A2 --3)t, + 1)J 

,~ = ~ a  + fl (39d)  
3 a  

However ,  as any l inear combinat ion  of  q)o(1, 2) and ~1(1, 2) also describes a IS 
state, we take as the generat ing wave functions for these states the fo l lowing ones: 

~ g  (1, 2) = Coo~ o (1, 2) + Coital (1, 2), (40a)  

q'g (1, 2) = Clo~o(1,  2 ) + C1]~1(1,2 ). (40b)  

In general,  the choice of  parameters  a ,  fl, Coo • • • Cll  for these generat ing wave 
funct ions is arbitrary. We consider  here three alternative choices based on the 
solution of  a 2 x 2 configuration interaction problem generated by these wave functions. 
These choices are characterized by minimizat ions  of  Eo + E1 (case A), Eo (case B), 
and E1 (case C), respectively.  The results are listed in table 1. 

Table 1 

Optimal parameters for generating wave functions. 

Type of minimization 

A B C 

aop t 1.801425 2.201973 
flopt 0.571686 1.659025 
C m 0.996310 0.926135 
Co: - 0.085830 - 0.377193 
C:o 0.085830 0.377193 
C n 0.996310 0.926135 
E~ - 2.839950 - 2.877037 
E[ - 2.124237 - 0.810173 
E~+ E~ -4.964187 - 3.687210 

1.984940 
0.518140 
0.992422 

- 0.122876 
0.122876 
0.992422 

- 2 . 7 6 8 6 3 8  

- 2.142608 
-4.911246 
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The concerted reference density is 

pg(r )  = pg(r) + lag(r), (41a) 

where pgo(r) and pgl(r) correspond to wg and u~g, respectively. The concerted object 
density is 

p f ( r )  = pro(r) + pf(r) ,  (41b) 

where the individual components are parametrized according to 

and 

pf (r) = No[e -a: + bo e-c°r + d0 e-e¢ ] 

pf(r)  = Nl[e -a :  + bl e-qr + die-e:]. 

(42a) 

(42b) 

In the above expressions, ao-eo and al -e l  are variational parameters and No and 
N1 are normalization constants. In all cases, the minimization via the concerted 
local-scaling transformation was carded out for the highest eigenvalue of the 
2 x 2 CI problem, namely, for E1 keeping pro(r) fixed to the near-Hartree-Fock 
density [38]. The results of these calculations are given in table 2. It is seen from 

T a b l e  2 

O p t i m a l  dens i t y  p a r a m e t e r s  and  e n e r g y  va l ue s  (Har t rees )  for loca l - sca led  t r a n s f o r m e d  w a v e  func t ions .  

T y p e  o f  gene ra t i ng  w a v e  f u n c t i o n  

A B C C *a) 

a I 4 .15662  4 .25909  4 .20207  4 . 2 0 9 6 0  

b 1 - 5 . 4 4 5 0 9 x  10 -2 3 .14279  x 10 -2 - 4 . 7 1 4 4 7  x 10 -2 - 4 . 5 9 4 0 0 x  10 -2 

c I 2 .40593  1 .46969 2 .28153  2 .25866  

d 1 1 .15266 x 10 -3 9 .91051  x 10 -6 0 .92015  x 10 -3 0 .87669  x 10 -3 

e 1 1 .03665 0 .51749  0 .99782  0 .98932  

Eo Ls - 2 .797951 - 2 .862835  - 2 . 775102  - 2 . 7 6 9 7 9 0  

E ~  - 2 .137995  - 1 .801722  - 2 .142541 - 2 . 1 4 2 6 9 2  

EoLS+ ElLS - 4 . 935946  - 4 . 6 6 4 5 5 7  - 4 . 9 1 7 6 4 3  - 4 . 9 1 2 4 8 2  

a)In C*, flopt = 0.493221. 

this table that in case A, which represents a "balanced" situation for both states, the 
concerted local-scaling transformation improves El from its generating wave function 
value of E g = -2.124237 to E Ls = -2.137995 Hartrees. This is achieved, however, 
at the expense of E0 which goes from Eo g = -2.839950 to E Ls = -2.797951 Hartrees, 
thus leading to a higher total energy. This fact is perhaps related to the highly 
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restricted nature of the wave functions W0 and ~I~1 in the present treatment. If one 
of them is improved by a concerted local-scaling transformation, there is simply not 
enough flexibility in the expansions given by eqs. (40) to allow for a concomitant 
improvement of the other. In case B, the generating wave function is heavily loaded 
toward the 11S ground state and represents poorly the 21S excited state. For this 
reason, concerted local-scaling greatly improves E1 from E g = - 0 . 8 1 0 1 7 3  to 
E ~  = - 1.801722 Hartrees, while it only slightly diminishes E 0. However, in case 
C, where the generating wave function already favors the 21S state, the concerted 
local-scaling transformation actually raises the value of E 1 from E g = -2.142608 
to ElLS = --2.142541 Hartrees. Taking into consideration the fact that the value 
E g = -2.142608 should have remained unmodified by the local-scaling transformation 
f (r)  = r, we see that the reason why this value changes in the present case is the 
particular choice of the object density pf(r) which does not correspond to that of 
the generating wave function W g but to the near-Hartree-Fock wave function [38]. 
This choice, therefore, creates a bias toward the lowest eigenvalue E o and leads to 
this anomalous result. Clearly, a way to remedy this situation is to increase the 
flexibility of the wave function. For this purpose, in case C* we have selected a 
generating wave function which has the same tXop t as in C but which has an exponent 
fl optimized with respect to the excited state energy E Ls ensuing from the concerted 
local-scaling transformation. As a result, we obtain ELS= -2.142692 Hartrees, 
which is lower than E g = -2.142608 Hartrees of case C. This shows that the local- 
scaling transformation version of density functional theory can indeed lead to values 
of the energy for excited states which are lower than those obtained from trial wave 
functions with optimized parameters. However, the present results also show that 
the flexibility that the generating wave functions must possess in order to approximate 
both states at the same time is crucial for the successful application of the concerted 
local-scaling method. 

The present method differs markedly from the direct optimization of an 
excited state through the use of local-scaling transformations proposed by Koga [42]. 
In that case, the flexibility of the generating wave functions is not a prerequisite 
for a successful optimization because only a given excited state is optimized 
at the time. In the present case, the fact that optimization is carried out by 
a concerted local-scaling transformation guarantees, in principle, that all energy 
eigenvalues can be approximated as closely as desired. But clearly, the price one 
must pay to render this method useful in practice is to increase the size of the 
configuration interaction expansion representing the generating wave function. 
However, the point is that since local-scaling transformations do lower the energy 
of configuration interaction wave functions (with optimized parameters) without 
adding new configurations, one can hope to treat excited states of atoms without 
having to resort to unduly long CI expansions. Of course, one should also remark 
that a direct numerical solution of eqs. (34) is also an alternative route for solving 
the excited state problem within the local-scaling version of density functional 
theory. 
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